Counting Planar Random Walk Holes

نویسنده

  • CHRISTIAN BENEŠ
چکیده

We study two variants of the notion of holes formed by planar simple random walk of time duration 2n and the areas associated with them. We prove in both cases that the number of holes of area greater than A(n), where {A(n)} is an increasing sequence, is, up to a logarithmic correction term, asymptotic to n · A(n) for a range of large holes, thus confirming an observation by Mandelbrot. A consequence is that the largest hole has an area which is logarithmically asymptotic to n. We also discuss the different exponent of 5/3 observed by Mandelbrot for small holes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loop-Erased Random Walk and Poisson Kernel on Planar Graphs

Lawler, Schramm and Werner showed that the scaling limit of the loop-erased random walk on Z2 is SLE2. We consider scaling limits of the loop-erasure of random walks on other planar graphs (graphs embedded into C so that edges do not cross one another). We show that if the scaling limit of the random walk is planar Brownian motion, then the scaling limit of its loop-erasure is SLE2. Our main co...

متن کامل

Asymptotic Enumeration and Limit Laws of Planar Graphs

A graph is planar if it can be embedded in the plane, or in the sphere, so that no two edges cross at an interior point. A planar graph together with a particular embedding is called a map. There is a rich theory of counting maps, started by Tutte in the 1960’s. However, in this paper we are interested in counting graphs as combinatorial objects, regardless of how many nonequivalent topological...

متن کامل

Convex Hulls of Multidimensional Random Walks

Let Sk be a random walk in R such that its distribution of increments does not assign mass to hyperplanes. We study the probability pn that the convex hull conv(S1, . . . , Sn) of the first n steps of the walk does not include the origin. By providing an explicit formula, we show that for planar symmetrically distributed random walks, pn does not depend on the distribution of increments. This e...

متن کامل

Counting Colored Random Triangulations

We revisit the problem of enumeration of vertex-tricolored planar random triangulations solved in [Nucl. Phys. B 516 [FS] (1998) 543-587] in the light of recent combinatorial developments relating classical planar graph counting problems to the enumeration of decorated trees. We give a direct combinatorial derivation of the associated counting function, involving tricolored trees. This is gener...

متن کامل

Experimental evidence of the role of compound counting processes in random walk approaches to fractional dynamics.

We present dielectric spectroscopy data obtained for gallium-doped Cd(0.99)Mn(0.01)Te:Ga mixed crystals, which exhibit a very special case of the two-power-law relaxation pattern with the high-frequency power-law exponent equal to 1. We explain this behavior, which cannot be fitted by any of the well-known empirical relaxation functions, in a subordinated diffusive framework. We propose a diffu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006